
8

Issue 48 | © 2015 Luger Research e.U.

System Architecture for
Distributed Intelligence
The usage of intelligence and sensors is not totally new, but solid-state lighting has brought it to a new
level that has led to a new way of thinking about system architecture. The EnLight project found the
distributed intelligence approach to be the preferable solution. Lex James from Philips Research,
Martin Creusen from Philips Lighting, and Micha Stalpers from AME explain the reasons why,
what the system architecture for distributed intelligence looks like, and how it works.

System architecture is about
partitioning a system into its
components and defining the
relationships between those
components. In general, it is
good practice to partition a
system so that the components
are loosely coupled and have
few dependencies while still
maintaining the cohesion of the
system as a whole. The notion
of “separation-of-concerns”
should be leading in any
system architecture.

This is certainly true for
the EnLight project which
introduces a paradigm shift
in lighting control by applying
the “publish-subscribe” design
pattern, appreciated both for its
scalability and loose coupling.
In such a lighting system,
sensors inform luminaires
instead of controlling them.
As a result, the publisher
(e.g. sensor) does not need any
knowledge of its subscribers
(e.g. luminaires). It just delivers
its event to any subscribed
device. This makes the
publisher subscriber-agnostic,
but what if the subscriber could
also be publisher-agnostic too?

To achieve this objective, a
second architectural choice is
needed: every subscriber needs
to be equipped with a decision
engine that can be programmed

with rules. The rules specify
how each subscriber acts when
it receives an event. So the
rules have a dependency with
the publisher rather than the
decision engine itself.

The third important architecture
choice for this project is closely
related to the economy of scale
of luminaire manufacturing.
The concept of an Intra
Luminaire Bus (ILB) allows
luminaire manufacturers to
build a large variety of
luminaires from standardized
HW/SW modules.

Since it would be impossible to
address the complete EnLight
system architecture in this
article, the following three key
topics have been selected.
The chapter on system
hierarchy addresses the various
control levels of the system.
The area level communication
section describes the
communication protocol that
implements the “publish-
subscribe” pattern. The third
chapter covers the intelligent
luminaire which acts as both a
subscriber (light sources) and a
publisher (embedded sensors).
Due to the decentralized
nature of the architecture,
the intelligent luminaire is
the cornerstone of the new
developed lighting system.

System Hierarchy
Four distinct aggregation levels
make up the EnLight architecture,
as shown in figure 1. The project
focused on luminaire and area
levels, together with the
corresponding intra- and inter-
luminaire communication
technologies. Building and
enterprise, the two higher
aggregation levels, are also
supported by the new architecture
(for example, to release information
from the lighting system to the
building management system).

The decentralized architecture is
based on distribution of information
rather than controlling individual
luminaires via a centralized control
unit. Thus “events” generated by
sensors are distributed across the
whole network. Thereafter each
luminaire decides autonomously,
according to its own embedded
rules, how to control its lighting
function based on notified events.
So, decision making is made at the
lowest aggregation level instead of
in the centralized control unit.

Another key architecture element
is the decoupling of the lighting
domain from adjacent domains.
Sensors report events without
knowing the type of subscribed
luminaires. Therefore, events are
not interpreted or prioritized by the
distributing sensor. This yields a
transparent architecture with a

SYSTEM ARCHITECTUREENLIGHT PROJECT

9

© 2015 Luger Research e.U. | Issue 48

Figure 1:
Levels of lighting
control

clear division of responsibilities in
which the behavior of the main
building block, the intelligent
luminaire, is determined by the
rules configuration - which can be
easily adapted to a changing
building environment. Additionally,
self-learning algorithms would
typically be accommodated by
the intelligent luminaire.

In principle, any external device
that can generate an event is
capable of informing luminaires and
therefore interacting with the
lighting system. The event source
does not require any upfront
knowledge of the luminaires,
enabling a smooth integration with
building management systems.

On the Area level, the lighting
control network connects the
intelligent luminaires and key
components, such as local
user controls and external
sensors (Figure 2).

The Area configurator enables the
configuration of these components
simply by changing the rules-based

Figure 2:
Area lighting system

SYSTEM ARCHITECTUREENLIGHT PROJECT

10

Issue 48 | © 2015 Luger Research e.U.

logic of the intelligent luminaires.
Optionally, events generated by
multiple external area level sensors
can be aggregated and processed
using the Sensor Fusion function to
reduce the network’s overall
communication load.

For monitoring or logging functions,
the area controller and communication
unit can send information from the
area network to the higher building
level and vice versa. Furthermore,
the area controller can transfer
events generated at different network
levels. Finally, the area controller can
also propose a certain light control
function, such as an orchestrated
color change, at the area level.

In the final EnLight demonstrations,
the lighting control network was
based on wireless ZigBee technology,
as this ensures a scalable low power
and low cost implementation.
Wired implementations are also
possible, but were not implemented
in the demonstrations.

The main objective of the project
was to develop a lighting system
that offers excellent user comfort
at the lowest possible energy
consumption. This requires the right
light to be generated in the right
place at the right time. This was
achieved by adopting granular
sensing and control in a connected
lighting system.

Granular sensing ensures,
for example, uninterrupted
luminaire operation during network
interruptions. Granular control
comes from embedding most of
the decision logic in the luminaires,
instead of using a centralized
controller to send commands to
individual luminaires. The luminaire
is intelligent because it autonomously
controls its own light sources.
Thus the lighting system is
effectively a collection of connected
and cooperating intelligent
luminaires which are able to adapt
to changes in the environment.

Area Level Communication
Communication between devices
within an area plays a prominent role
in the EnLight architecture. It is
designed to run on top of existing
communication standards like
ZigBee and/or IP and to support
scalability and flexibility of the
lighting system. The communication
function is implemented as a set of
reusable modules to guarantee
consistency and facilitate ease
of integration.

Communication protocol
The communication protocol is
designed in such a way that new
sensors and luminaires can be
added to the area network while
other devices remain operational.
System intelligence, in the form of
rules, can be configured and
simulated off-line. Offering
intelligence by configuration is a key
element of decentralized systems
and accommodates the system with
a number of unique properties.

•	 In a building environment, new
sensors can be installed and put
into operation without needing to
take the whole system offline.
Luminaires requiring sensor input
for their decisions can be easily
updated with new rules in just a
few seconds.

•	 Once installed, new luminaires
can be quickly put into operation
by connecting the power and
providing them with their initial
rules.

•	 All EnLight devices are
interconnected - there is no
dependency on a physical
topology. This allows unlimited
intelligence reconfiguration simply
by providing the luminaire with
new rules. Reconfiguring an area
with 40 luminaires only takes a
few minutes.

•	 Reconfiguration of a single sensor,
luminaire or part of the system is
possible without impacting the
rest of the system.

•	 As the impact on uptime is very
limited, automation of the
reconfiguration process is
possible allowing for self-learning
capabilities.

Figure 3:
Example of including a
new sensor in the area
network

SYSTEM ARCHITECTUREENLIGHT PROJECT

11

© 2015 Luger Research e.U. | Issue 48

The communication protocol is best
explained by the example outlined in
figure 3 where sensor A is newly
added to the system. First the area
configurator configures the sensor
by sending one or more parameters
(e.g. absence delay). Since the
sensor is new, the area configurator
will also program one or more rules
into the luminaires telling them how
to respond to events from the sensor.

After configuration, the sensor
announces itself to the network.
Announcing is typically initiated by
a button press or internal timer.
When receiving the announcement,
each intelligent luminaire checks the
occurrence of the sensor in its rules.
If it is found, the luminaire sends
a subscription request. As a result
the sensor adds the luminaire to
its subscription list.

After subscription, the newly
added sensor is now operational
within the area network. As soon
as the sensor detects something of
interest, it sends an event message
to all devices in its subscription list.
Each luminaire receiving an event
that matches one (or more) of its
rules will execute the associated
actions. More details are given in
the next section.

The protocol separates the sensor
domain from the luminaire domain.
Devices other than luminaires
can send events without adding
lighting-specific details. They can
also subscribe to events for
monitoring and analysis.

Information provided by the
system can be valuable in
determining energy saving strategies.
Examples are “heat maps” of
occupancy information and
daylight measurements.

Bridging areas
The Area-to-Area (A2A) bridge has
been developed to interconnect
networks. The bridge can connect
networks based on different
communication technologies (e.g.
ZigBee to IP bridge) but can also be
used to scale a network to any size
independent of communication-
technology constraints. The bridge
acts as proxy for devices on other
networks and is therefore invisible
for the light designer.

Figure 4 outlines how the bridge
interconnects two area networks for
a presence sensor and an intelligent
luminaire programmed to respond
to the sensor’s events.

As described previously, including
devices in the network and device
configuration is performed locally
at area network level. The protocol
was designed to allow inter-area
communication for announcement
and operation by making a distinction
between a message’s local source
and its origin in the system.

Communication framework
The communication framework was
developed with three objectives in
mind: ensure a consistent protocol

implementation across devices from
multiple partners, ease integration
and minimize development effort.
The framework provides the “glue”
between an EnLight C-API and the
EnLight binary protocol. It enforces
a clear separation between
application development and
communication technology.

When an instruction from the
C-API is invoked, the framework
encodes a message containing the
corresponding command and sends
this to a given target device in the
network, identified by a unique
8-byte device ID. It assumes the
existence of basic communication
operations “send” and “receive” for
a particular technology. It also
converts device IDs to technology-
specific network addresses, such
as ZigBee short IDs or internet IP
addresses. The response received
from the target device is decoded
by the framework and results in
the corresponding API callback
to the application.

The main benefit of this framework
approach is that the complex
communication layer is made
available to application builders via a
simple interface without needing to
know all the details underneath.

The ZigBee technology layer was
implemented for a Windows
environment using a ZigBee dongle,
with a number of sensors running
on an EM250 (Silicon Labs) and the
luminaire running on a JN5168 (NXP).
For security, the Common Security

Figure 4:
Example of a bridge
interconnecting two
area networks

SYSTEM ARCHITECTUREENLIGHT PROJECT

12

Issue 48 | © 2015 Luger Research e.U.

Model with a predefined link key
was used. Conforming to the ZigBee
cluster library format, EnLight’s
ZigBee implementation can coexist
with other ZigBee profiles such
as home automation.

Interface details
The communication framework
offers a set of interfaces that can be
regarded as clusters of commands
which will be described individually.

The device configuration interface
offers run-time configuration of
sensor and luminaire parameters in
an operational system. To avoid
inconsistencies during configuration,
the configuration start and end are
explicitly communicated. Getting
and setting device parameters is
based on key-value pairs. Moreover,
the list of parameters supported by
a particular device can be
requested, and only the Area
Configurator requires knowledge

of these parameters. This allows a
particular device’s parameters to be
extended without any impact on the
protocol structure.

The programming interface offers
run-time configuration of the
luminaire intelligence. The rules are
encoded into a compact binary
format and transmitted to the
luminaires in packets.

The event subscription interface is
typically implemented by (but not
limited to) a sensor device to allow
other devices to subscribe to its
events. It also allows other
networked devices to request a
sensor device to announce itself,
enforcing announcement after
system reconfiguration.
The intelligent luminaire uses the
interface to subscribe to sensor
events. The notification command
is used to inform other devices
of an event.

Intelligent Luminaire

Luminaire architecture
There are diverse contemporary
luminaire designs across various,
regionally different lighting market
segments. A main architectural
question is therefore how to manage
such a scattered mass-volume
market cost-effectively. To avoid
specific (low volume) peak designs,
with relatively high development and
bill-of-material (BOM) cost, common
modules and standardized interfaces
need to be (re-)defined as the
lighting industry has always

Method Notes

StartConfiguration() Starts configuration of the device

GetParameterList()
Returns the list of parameter identifiers the
device supports

GetParameter()
Returns the value of a parameter, gives its
identifier

SetParameter()
Sets the value of the parameter with the given
identifier

EndConfiguration()
Signals that configuration of the device
is complete

Table 1:
Device configuration
interface

Table 2:
Programming rules
interface

Method Notes

StartProgramming() Starts programming of rules for the device

AddRuleFragment() Adds (a fragment of) a new rule for the device

EndProgramming() Ends programming of rules for the device

Table 3:
Event subscription &
notification interface

Method Notes

SubscribeToEvent() Subscribes to the given event of this device

UnsubscribeFromEvent() Unsubscribes from the given event of this device

RequestToAnnounce() Request a device to announce itself

Announce() Announces that the device is operational and
ready for subscription

NotifyEvent() Notifies the occurrence of an event to
the subscribers

Figure 5:
Communication
framework layering

SYSTEM ARCHITECTUREENLIGHT PROJECT

13

© 2015 Luger Research e.U. | Issue 48

been based on standardized
light sources and interfaces
(e.g. E27, E14, GU10, etc.).

To date, standardized interfaces
for LED-based light sources have
been scarce. However, the global
lighting consortium, Zhaga,
published its first interchangeability
standards in 2012. Zhaga standards
focus on non-competitive aspects
of the main interfaces, ensuring
sufficient design freedom to
differentiate and compete. This will
lower the adoption hurdle for LED
design-ins and further fuel the
LED-based lighting industry.

The EnLight luminaire architecture
uses an I²C-bus interface to
interconnect embedded
components, allowing partners to
contribute their technologies.
The resulting modular, Plug-and-
Play architecture facilitates future
luminaire upgrades. It also enables
‘late stage’ luminaire configuration,
either during production or
installation. Finally, an easy,
exchangeable modular concept
reduces potential cost-of-non-
quality, and decouples the lifecycles
of independent technologies.
The schematic diagram in figure 6
depicts the components of the
architecture’s key building block:
the intelligent luminaire.

The different functions in the
diagram can be either integrated
or stand-alone, as preferred.
For example, it is possible to
combine the driver and LED engine,
or the embedded controller and
LED engine. The distributed power
architecture uses centralized
high- and low-power supply units,
supplying 24 V DC (i.e. SELV) to
the LED modules and drivers
(optionally, the 24 V DC supply can
also be used for power-demanding
embedded sensors), and 5 V for the
communication bus. It centralizes
the power factor control and
harmonic distortion circuits, and
ensures low voltage Plug-and-Play
operation for the luminaire’s other
key components. This reduces
design complexity significantly,
especially in multi LED Light
Engine (LLE) luminaires.

Embedded sensors, such as
temperature, light level or absence
sensors, increase control
effectiveness as they are typically
co-located with the luminaire.
This also simplifies installation
and commissioning.

The embedded controller implements
the decision engine and logical
luminaire. The communication
module connects the embedded
controller to the ‘Lighting Control
Network’ (LCN).

LED light engine
The LLE actually produces the light
and is thus the module with the
largest diversity. In a full color
luminaire like the Wedge, the LED
engine differs significantly from the
single channel LLE used in the
TaskFlex. The LLE’s key functions
are depicted in figure 7.

The color generation module
calculates the individual primary
colors intensity to realize the closest
color possible. Because some
applications require slow color
transitions combined with a fast
response to brightness changes,
the LLE has a separate brightness
and color fader.

Embedded controller
LLEs and Embedded Sensors need
a controller to bring the luminaire to
life. From a software perspective the
controller is the most complex
module. Fortunately, all EnLight
luminaires share the same controller
software, so development cost can
be spread over many luminaires.

The “Decision Engine” is the
embedded controller’s brain and the
attached memory contains a set of
rules which determine the luminaire’s
behavior. Rules are programmed
over the “Luminaire Control Interface”
and stored in persistent memory.

Figure 6:
Modular luminaire
block diagram

SYSTEM ARCHITECTUREENLIGHT PROJECT

14

Issue 48 | © 2015 Luger Research e.U.

The decision engine can be
triggered by both internal (ILB) and
external events (LCN). Each time an
event is received all the decision
engine’s rules are evaluated, and if a
rule is triggered one or more actions

are executed. Typically, an action
results in a luminaire command that
is passed to the logical luminaire.
This component translates a
luminaire command into ILB
messages to control the LLEs.

Decision engine & rules
In general there are two methods
for implementing decision logic:
scripting or rules. The consortium
chose a rule-based solution as most
lighting scenarios map well onto
rules. Rules are also simple and
inherently parallel, so lighting
designers are not forced into the
sequential thinking of programmers.
The decision engine evaluates rules
upon receiving an event. Rules are
kept relatively simple to allow
implementation on low cost
hardware. While specified in XML,
rules are programmed and stored in
binary format and consist of three
parts: Trigger Event, Condition and
Action(s). The Trigger Event specifies
the event (type and source address)
that will trigger the rule. If an event
matches the rule’s trigger event,
its condition is tested; if true the
specified actions are executed.
Table 4 lists the supported actions.

Logical luminaire
The logical luminaire understands
“priority levels”, with all settings
applied on a certain priority level.
New settings only become visible if
the specified level is activated.
If more priority levels are active
simultaneously, the highest level
settings will be used. The level
concept offers a powerful means
to prioritize conflicting settings.
The “LevelActivation” action is used
to activate or deactivate priority
levels. As shown in the example
(Figure 9), a level’s activation can
have a timeout and when the timer
expires, the level returns to its
original state. This feature is often
used to make rules more robust for
temporary communication flaws.

The most important luminaire
commands are listed in table 5.

The “SetLightLevelControl” command
activates the ‘closed loop light level
control’, often used for daylight
harvesting. The luminaire will try to
realize the specified amount of light
as measured by the light level sensor.

The logical luminaire also takes care
of presets and “Level Definitions”,
which can be configured and stored

Action Explanation

LevelActivation Activates or deactivates a priority level

SetVariable Set the content of a variable

LuminaireSetting Change a light setting of a LED Light Engine

SetTime Set the local time of the luminaire

GenerateEvent Generate an event

Table 4:
Rule actions
(some actions require
arguments, comprising
the event’s parameters
and variables -
Figure 9)

Figure 8:
Embedded controller
block diagram

Luminaire Setting Explanation

On Switch the light on

Off Switch the light off

SetColor Set the color

SetBrightness Set the dimming level

ActivatePreset Apply the settings according to the
specified presets

SetLightLevelControl (De-)activate the closed loop light level control

SetColorFadeTime Set the time to go from one color to the other

SetFadeTime Set the time to go from one dim level to the other

SetPowerMode Set the high power supply mode: on, off or auto

Table 5:
Luminaire commands

Figure 7:
LED light engine block
diagram

SYSTEM ARCHITECTUREENLIGHT PROJECT

15

© 2015 Luger Research e.U. | Issue 48

in persistent memory. Presets define
each LLE’s brightness, color and
on/off state, and can be recalled
with the “ActivatePreset” command.
Similar to a preset, Level Definitions
allow default luminaire settings to
be overridden at power-on.

Event generation
A luminaire can generate its own
virtual events and the generic
implementation of this feature
makes it very powerful. Events can
be generated instantly or after a
specified time. This effectively
implements a one shot timer,
commonly used in lighting
applications. For scheduled events,
which require an absolute time and
date, the luminaire’s real time clock
ensures the event occurs at the
correct time. Finally, the event module
can be configured to generate
events on a periodic basis.

Key specifications:
•	 Local rule based engine,

up to 250 rules
•	 Up to 250 presets
•	 Color control: CCT, xy, HSV, RGB
•	 Up to 16 priority levels
•	 Embedded sensors:

PIR / Light Level /
Temperature / Switch

•	 Closed loop light level control

Conclusions
The consortium was a unique
collaboration with partners and,
sometimes, competitors.
The following conclusions are based
on scientific and technical results.
Commercial feasibility has not been
addressed and is not taken into
account in the conclusions.

The EnLight architecture scales
smoothly from a single luminaire to
many hundreds. This makes the
luminaire best place to host the
intelligence (decision logic) of a
lighting system as the amount of
intelligence in the system grows
linearly with the amount of luminaires.

Using a standardized intra luminaire
bus enables luminaire diversity
based on a limited amount of
standardized modules from
different vendors. The consortium
realized 14 types of luminaires,
all based on the same building
blocks. For these luminaires,
a simple yet powerful decision
engine (+ZigBee stack) was
implemented on a low cost
microprocessor (16 MHz RISC,
32 kB Ram, 256 kB flash). Further,
the ILB framework showed that
software reuse is possible when
moving from modular hardware
to fully integrated hardware
(cost down for high volume).

Informing as opposed to controlling
a luminaire implies that sensors and
controls don’t require any
knowledge of the system’s
luminaires. Embedded sensors in
combination with local intelligence
allow simple and robust granular
control, but a well thought-out
communication framework is
needed for the effective development
of such a system. In this case,
the use of a publish/subscribe
design pattern results in very
efficient communication and
combined with the use of prioritized
control (levels) delivers a very
powerful solution for lighting
systems with multiple sensors
and controls.

SYSTEM ARCHITECTUREENLIGHT PROJECT

Figure 9:
XML presentation
of a rule - The event
“SceneSelected” is
generated by a
6 button panel.
The event comes
with one parameter
representing the
pressed button
number. This parameter
is passed to the
“LuminaireSetting”
command
“ActivatePreset”.
So the shown rule
will activate a preset
depending on which
button has been
pressed

