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System Architecture for 
Distributed Intelligence
The usage of intelligence and sensors is not totally new, but solid-state lighting has brought it to a new 
level that has led to a new way of thinking about system architecture. The EnLight project found the 
distributed intelligence approach to be the preferable solution. Lex James from Philips Research, 
Martin Creusen from Philips Lighting, and Micha Stalpers from AME explain the reasons why,  
what the system architecture for distributed intelligence looks like, and how it works.

System architecture is about 
partitioning a system into its 
components and defining the 
relationships between those 
components. In general, it is 
good practice to partition a 
system so that the components 
are loosely coupled and have 
few dependencies while still 
maintaining the cohesion of the 
system as a whole. The notion 
of “separation-of-concerns” 
should be leading in any  
system architecture. 

This is certainly true for 
the EnLight project which 
introduces a paradigm shift 
in lighting control by applying 
the “publish-subscribe” design 
pattern, appreciated both for its 
scalability and loose coupling. 
In such a lighting system, 
sensors inform luminaires 
instead of controlling them.  
As a result, the publisher  
(e.g. sensor) does not need any 
knowledge of its subscribers 
(e.g. luminaires). It just delivers 
its event to any subscribed 
device. This makes the 
publisher subscriber-agnostic, 
but what if the subscriber could 
also be publisher-agnostic too? 

To achieve this objective, a 
second architectural choice is 
needed: every subscriber needs 
to be equipped with a decision 
engine that can be programmed 

with rules. The rules specify 
how each subscriber acts when 
it receives an event. So the 
rules have a dependency with 
the publisher rather than the 
decision engine itself.

The third important architecture 
choice for this project is closely 
related to the economy of scale 
of luminaire manufacturing.  
The concept of an Intra 
Luminaire Bus (ILB) allows 
luminaire manufacturers to  
build a large variety of 
luminaires from standardized 
HW/SW modules.

Since it would be impossible to 
address the complete EnLight 
system architecture in this 
article, the following three key 
topics have been selected.  
The chapter on system 
hierarchy addresses the various 
control levels of the system. 
The area level communication 
section describes the 
communication protocol that 
implements the “publish-
subscribe” pattern. The third 
chapter covers the intelligent 
luminaire which acts as both a 
subscriber (light sources) and a 
publisher (embedded sensors). 
Due to the decentralized 
nature of the architecture, 
the intelligent luminaire is 
the cornerstone of the new 
developed lighting system.

System Hierarchy
Four distinct aggregation levels 
make up the EnLight architecture, 
as shown in figure 1. The project 
focused on luminaire and area 
levels, together with the 
corresponding intra- and inter-
luminaire communication 
technologies. Building and 
enterprise, the two higher 
aggregation levels, are also 
supported by the new architecture 
(for example, to release information 
from the lighting system to the 
building management system).

The decentralized architecture is 
based on distribution of information 
rather than controlling individual 
luminaires via a centralized control 
unit. Thus “events” generated by 
sensors are distributed across the 
whole network. Thereafter each 
luminaire decides autonomously, 
according to its own embedded 
rules, how to control its lighting 
function based on notified events. 
So, decision making is made at the 
lowest aggregation level instead of 
in the centralized control unit. 

Another key architecture element  
is the decoupling of the lighting 
domain from adjacent domains. 
Sensors report events without 
knowing the type of subscribed 
luminaires. Therefore, events are 
not interpreted or prioritized by the 
distributing sensor. This yields a 
transparent architecture with a 
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Figure 1: 
Levels of lighting 
control

clear division of responsibilities in 
which the behavior of the main 
building block, the intelligent 
luminaire, is determined by the 
rules configuration - which can be 
easily adapted to a changing 
building environment. Additionally, 
self-learning algorithms would 
typically be accommodated by  
the intelligent luminaire.

In principle, any external device  
that can generate an event is 
capable of informing luminaires and 
therefore interacting with the 
lighting system. The event source 
does not require any upfront 
knowledge of the luminaires, 
enabling a smooth integration with 
building management systems.  

On the Area level, the lighting 
control network connects the 
intelligent luminaires and key 
components, such as local  
user controls and external  
sensors (Figure 2).

The Area configurator enables the 
configuration of these components 
simply by changing the rules-based 

Figure 2: 
Area lighting system
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logic of the intelligent luminaires. 
Optionally, events generated by 
multiple external area level sensors 
can be aggregated and processed 
using the Sensor Fusion function to 
reduce the network’s overall 
communication load.

For monitoring or logging functions, 
the area controller and communication 
unit can send information from the 
area network to the higher building 
level and vice versa. Furthermore,  
the area controller can transfer 
events generated at different network 
levels. Finally, the area controller can 
also propose a certain light control 
function, such as an orchestrated 
color change, at the area level.

In the final EnLight demonstrations, 
the lighting control network was 
based on wireless ZigBee technology, 
as this ensures a scalable low power 
and low cost implementation.  
Wired implementations are also 
possible, but were not implemented 
in the demonstrations.

The main objective of the project 
was to develop a lighting system 
that offers excellent user comfort  
at the lowest possible energy 
consumption. This requires the right 
light to be generated in the right 
place at the right time. This was 
achieved by adopting granular 
sensing and control in a connected 
lighting system. 

Granular sensing ensures,  
for example, uninterrupted  
luminaire operation during network 
interruptions. Granular control 
comes from embedding most of  
the decision logic in the luminaires, 
instead of using a centralized 
controller to send commands to 
individual luminaires. The luminaire 
is intelligent because it autonomously 
controls its own light sources.  
Thus the lighting system is 
effectively a collection of connected 
and cooperating intelligent 
luminaires which are able to adapt 
to changes in the environment. 

Area Level Communication
Communication between devices 
within an area plays a prominent role 
in the EnLight architecture. It is 
designed to run on top of existing 
communication standards like 
ZigBee and/or IP and to support 
scalability and flexibility of the 
lighting system. The communication 
function is implemented as a set of 
reusable modules to guarantee 
consistency and facilitate ease  
of integration.

Communication protocol
The communication protocol is 
designed in such a way that new 
sensors and luminaires can be 
added to the area network while 
other devices remain operational. 
System intelligence, in the form of 
rules, can be configured and 
simulated off-line. Offering 
intelligence by configuration is a key 
element of decentralized systems 
and accommodates the system with 
a number of unique properties.

•	 In a building environment, new 
sensors can be installed and put 
into operation without needing to 
take the whole system offline. 
Luminaires requiring sensor input 
for their decisions can be easily 
updated with new rules in just a 
few seconds.

•	 Once installed, new luminaires 
can be quickly put into operation 
by connecting the power and 
providing them with their initial 
rules.

•	 All EnLight devices are 
interconnected - there is no 
dependency on a physical 
topology. This allows unlimited 
intelligence reconfiguration simply 
by providing the luminaire with 
new rules. Reconfiguring an area 
with 40 luminaires only takes a 
few minutes.

•	 Reconfiguration of a single sensor, 
luminaire or part of the system is 
possible without impacting the 
rest of the system.

•	 As the impact on uptime is very 
limited, automation of the 
reconfiguration process is 
possible allowing for self-learning 
capabilities.

Figure 3: 
Example of including a 
new sensor in the area 
network
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The communication protocol is best 
explained by the example outlined in 
figure 3 where sensor A is newly 
added to the system. First the area 
configurator configures the sensor 
by sending one or more parameters 
(e.g. absence delay). Since the 
sensor is new, the area configurator 
will also program one or more rules 
into the luminaires telling them how 
to respond to events from the sensor. 

After configuration, the sensor 
announces itself to the network. 
Announcing is typically initiated by  
a button press or internal timer. 
When receiving the announcement, 
each intelligent luminaire checks the 
occurrence of the sensor in its rules. 
If it is found, the luminaire sends  
a subscription request. As a result 
the sensor adds the luminaire to  
its subscription list. 

After subscription, the newly  
added sensor is now operational 
within the area network. As soon  
as the sensor detects something of 
interest, it sends an event message 
to all devices in its subscription list. 
Each luminaire receiving an event 
that matches one (or more) of its 
rules will execute the associated 
actions. More details are given in  
the next section.

The protocol separates the sensor 
domain from the luminaire domain. 
Devices other than luminaires  
can send events without adding 
lighting-specific details. They can 
also subscribe to events for 
monitoring and analysis.  

Information provided by the  
system can be valuable in 
determining energy saving strategies.  
Examples are “heat maps” of 
occupancy information and  
daylight measurements.

Bridging areas
The Area-to-Area (A2A) bridge has 
been developed to interconnect 
networks. The bridge can connect 
networks based on different 
communication technologies (e.g. 
ZigBee to IP bridge) but can also be 
used to scale a network to any size 
independent of communication-
technology constraints. The bridge 
acts as proxy for devices on other 
networks and is therefore invisible 
for the light designer. 

Figure 4 outlines how the bridge 
interconnects two area networks for 
a presence sensor and an intelligent 
luminaire programmed to respond  
to the sensor’s events.

As described previously, including 
devices in the network and device 
configuration is performed locally  
at area network level. The protocol 
was designed to allow inter-area 
communication for announcement 
and operation by making a distinction 
between a message’s local source 
and its origin in the system.

Communication framework
The communication framework was 
developed with three objectives in 
mind: ensure a consistent protocol 

implementation across devices from 
multiple partners, ease integration 
and minimize development effort. 
The framework provides the “glue” 
between an EnLight C-API and the 
EnLight binary protocol. It enforces 
a clear separation between 
application development and 
communication technology. 

When an instruction from the  
C-API is invoked, the framework 
encodes a message containing the 
corresponding command and sends 
this to a given target device in the 
network, identified by a unique 
8-byte device ID. It assumes the 
existence of basic communication 
operations “send” and “receive” for 
a particular technology. It also 
converts device IDs to technology-
specific network addresses, such  
as ZigBee short IDs or internet IP 
addresses. The response received 
from the target device is decoded 
by the framework and results in  
the corresponding API callback  
to the application.

The main benefit of this framework 
approach is that the complex 
communication layer is made 
available to application builders via a 
simple interface without needing to 
know all the details underneath.

The ZigBee technology layer was 
implemented for a Windows 
environment using a ZigBee dongle, 
with a number of sensors running  
on an EM250 (Silicon Labs) and the 
luminaire running on a JN5168 (NXP). 
For security, the Common Security 

Figure 4: 
Example of a bridge 
interconnecting two 
area networks
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Model with a predefined link key 
was used. Conforming to the ZigBee 
cluster library format, EnLight’s 
ZigBee implementation can coexist 
with other ZigBee profiles such  
as home automation.

Interface details
The communication framework 
offers a set of interfaces that can be 
regarded as clusters of commands 
which will be described individually. 

The device configuration interface 
offers run-time configuration of 
sensor and luminaire parameters in 
an operational system. To avoid 
inconsistencies during configuration, 
the configuration start and end are 
explicitly communicated. Getting 
and setting device parameters is 
based on key-value pairs. Moreover, 
the list of parameters supported by 
a particular device can be 
requested, and only the Area 
Configurator requires knowledge  

of these parameters. This allows a 
particular device’s parameters to be 
extended without any impact on the 
protocol structure.

The programming interface offers 
run-time configuration of the 
luminaire intelligence. The rules are 
encoded into a compact binary 
format and transmitted to the 
luminaires in packets. 

The event subscription interface is 
typically implemented by (but not 
limited to) a sensor device to allow 
other devices to subscribe to its 
events. It also allows other 
networked devices to request a 
sensor device to announce itself, 
enforcing announcement after 
system reconfiguration.  
The intelligent luminaire uses the 
interface to subscribe to sensor 
events. The notification command  
is used to inform other devices  
of an event. 

Intelligent Luminaire 

Luminaire architecture 
There are diverse contemporary 
luminaire designs across various, 
regionally different lighting market 
segments. A main architectural 
question is therefore how to manage 
such a scattered mass-volume 
market cost-effectively. To avoid 
specific (low volume) peak designs, 
with relatively high development and 
bill-of-material (BOM) cost, common 
modules and standardized interfaces 
need to be (re-)defined as the 
lighting industry has always  

Method Notes

StartConfiguration() Starts configuration of the device

GetParameterList()
Returns the list of parameter identifiers the 
device supports

GetParameter()
Returns the value of a parameter, gives its 
identifier

SetParameter() 
Sets the value of the parameter with the given 
identifier

EndConfiguration() 
Signals that configuration of the device  
is complete

Table 1: 
Device configuration 
interface

Table 2: 
Programming rules 
interface

Method Notes

StartProgramming() Starts programming of rules for the device

AddRuleFragment() Adds (a fragment of) a new rule for the device

EndProgramming() Ends programming of rules for the device

Table 3: 
Event subscription & 
notification interface

Method Notes

SubscribeToEvent() Subscribes to the given event of this device

UnsubscribeFromEvent() Unsubscribes from the given event of this device

RequestToAnnounce() Request a device to announce itself

Announce() Announces that the device is operational and 
ready for subscription

NotifyEvent() Notifies the occurrence of an event to  
the subscribers

Figure 5: 
Communication 
framework layering
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been based on standardized  
light sources and interfaces  
(e.g. E27, E14, GU10, etc.). 

To date, standardized interfaces  
for LED-based light sources have 
been scarce. However, the global 
lighting consortium, Zhaga, 
published its first interchangeability 
standards in 2012. Zhaga standards 
focus on non-competitive aspects  
of the main interfaces, ensuring 
sufficient design freedom to 
differentiate and compete. This will 
lower the adoption hurdle for LED 
design-ins and further fuel the 
LED-based lighting industry. 

The EnLight luminaire architecture 
uses an I²C-bus interface to 
interconnect embedded 
components, allowing partners to 
contribute their technologies.  
The resulting modular, Plug-and-
Play architecture facilitates future 
luminaire upgrades. It also enables 
‘late stage’ luminaire configuration, 
either during production or 
installation. Finally, an easy, 
exchangeable modular concept 
reduces potential cost-of-non-
quality, and decouples the lifecycles 
of independent technologies.  
The schematic diagram in figure 6 
depicts the components of the 
architecture’s key building block:  
the intelligent luminaire.

The different functions in the 
diagram can be either integrated  
or stand-alone, as preferred.  
For example, it is possible to 
combine the driver and LED engine, 
or the embedded controller and  
LED engine. The distributed power 
architecture uses centralized 
high- and low-power supply units, 
supplying 24 V DC (i.e. SELV) to  
the LED modules and drivers 
(optionally, the 24 V DC supply can 
also be used for power-demanding 
embedded sensors), and 5 V for the 
communication bus. It centralizes 
the power factor control and 
harmonic distortion circuits, and 
ensures low voltage Plug-and-Play 
operation for the luminaire’s other 
key components. This reduces 
design complexity significantly, 
especially in multi LED Light  
Engine (LLE) luminaires.

Embedded sensors, such as 
temperature, light level or absence 
sensors, increase control 
effectiveness as they are typically 
co-located with the luminaire.  
This also simplifies installation  
and commissioning.

The embedded controller implements 
the decision engine and logical 
luminaire. The communication 
module connects the embedded 
controller to the ‘Lighting Control 
Network’ (LCN). 

LED light engine
The LLE actually produces the light 
and is thus the module with the 
largest diversity. In a full color 
luminaire like the Wedge, the LED 
engine differs significantly from the 
single channel LLE used in the 
TaskFlex. The LLE’s key functions 
are depicted in figure 7.

The color generation module 
calculates the individual primary 
colors intensity to realize the closest 
color possible. Because some 
applications require slow color 
transitions combined with a fast 
response to brightness changes,  
the LLE has a separate brightness 
and color fader.

Embedded controller
LLEs and Embedded Sensors need 
a controller to bring the luminaire to 
life. From a software perspective the 
controller is the most complex 
module. Fortunately, all EnLight 
luminaires share the same controller 
software, so development cost can 
be spread over many luminaires. 

The “Decision Engine” is the 
embedded controller’s brain and the 
attached memory contains a set of 
rules which determine the luminaire’s 
behavior. Rules are programmed 
over the “Luminaire Control Interface” 
and stored in persistent memory. 

Figure 6:  
Modular luminaire 
block diagram
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The decision engine can be 
triggered by both internal (ILB) and 
external events (LCN). Each time an 
event is received all the decision 
engine’s rules are evaluated, and if a 
rule is triggered one or more actions 

are executed. Typically, an action 
results in a luminaire command that 
is passed to the logical luminaire.  
This component translates a 
luminaire command into ILB 
messages to control the LLEs. 

Decision engine & rules
In general there are two methods  
for implementing decision logic: 
scripting or rules. The consortium 
chose a rule-based solution as most 
lighting scenarios map well onto 
rules. Rules are also simple and 
inherently parallel, so lighting 
designers are not forced into the 
sequential thinking of programmers. 
The decision engine evaluates rules 
upon receiving an event. Rules are 
kept relatively simple to allow 
implementation on low cost 
hardware. While specified in XML, 
rules are programmed and stored in 
binary format and consist of three 
parts: Trigger Event, Condition and 
Action(s). The Trigger Event specifies 
the event (type and source address) 
that will trigger the rule. If an event 
matches the rule’s trigger event,  
its condition is tested; if true the 
specified actions are executed. 
Table 4 lists the supported actions.

Logical luminaire
The logical luminaire understands 
“priority levels”, with all settings 
applied on a certain priority level. 
New settings only become visible if 
the specified level is activated.  
If more priority levels are active 
simultaneously, the highest level 
settings will be used. The level 
concept offers a powerful means  
to prioritize conflicting settings.  
The “LevelActivation” action is used 
to activate or deactivate priority 
levels. As shown in the example 
(Figure 9), a level’s activation can 
have a timeout and when the timer 
expires, the level returns to its 
original state. This feature is often 
used to make rules more robust for 
temporary communication flaws. 

The most important luminaire 
commands are listed in table 5.

The “SetLightLevelControl” command 
activates the ‘closed loop light level 
control’, often used for daylight 
harvesting. The luminaire will try to 
realize the specified amount of light 
as measured by the light level sensor.

The logical luminaire also takes care 
of presets and “Level Definitions”, 
which can be configured and stored 

Action Explanation

LevelActivation Activates or deactivates a priority level

SetVariable Set the content of a variable

LuminaireSetting Change a light setting of a LED Light Engine 

SetTime Set the local time of the luminaire

GenerateEvent Generate an event 

Table 4: 
Rule actions  
(some actions require 
arguments, comprising 
the event’s parameters 
and variables -  
Figure 9)

Figure 8: 
Embedded controller 
block diagram

Luminaire Setting Explanation

On Switch the light on

Off Switch the light off

SetColor Set the color

SetBrightness Set the dimming level

ActivatePreset Apply the settings according to the  
specified presets

SetLightLevelControl (De-)activate the closed loop light level control

SetColorFadeTime Set the time to go from one color to the other

SetFadeTime Set the time to go from one dim level to the other

SetPowerMode Set the high power supply mode: on, off or auto

Table 5: 
Luminaire commands

Figure 7: 
LED light engine block 
diagram
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in persistent memory. Presets define 
each LLE’s brightness, color and 
on/off state, and can be recalled 
with the “ActivatePreset” command. 
Similar to a preset, Level Definitions 
allow default luminaire settings to  
be overridden at power-on.

Event generation
A luminaire can generate its own 
virtual events and the generic 
implementation of this feature 
makes it very powerful. Events can 
be generated instantly or after a 
specified time. This effectively 
implements a one shot timer, 
commonly used in lighting 
applications. For scheduled events, 
which require an absolute time and 
date, the luminaire’s real time clock 
ensures the event occurs at the 
correct time. Finally, the event module 
can be configured to generate 
events on a periodic basis.

Key specifications:
•	 Local rule based engine,  

up to 250 rules
•	 Up to 250 presets
•	 Color control: CCT, xy, HSV, RGB 
•	 Up to 16 priority levels
•	 Embedded sensors:  

PIR / Light Level /  
Temperature / Switch

•	 Closed loop light level control

Conclusions
The consortium was a unique 
collaboration with partners and, 
sometimes, competitors.  
The following conclusions are based 
on scientific and technical results. 
Commercial feasibility has not been 
addressed and is not taken into 
account in the conclusions. 

The EnLight architecture scales 
smoothly from a single luminaire to 
many hundreds. This makes the 
luminaire best place to host the 
intelligence (decision logic) of a 
lighting system as the amount of 
intelligence in the system grows 
linearly with the amount of luminaires.

Using a standardized intra luminaire 
bus enables luminaire diversity 
based on a limited amount of 
standardized modules from  
different vendors. The consortium 
realized 14 types of luminaires,  
all based on the same building 
blocks. For these luminaires,  
a simple yet powerful decision 
engine (+ZigBee stack) was 
implemented on a low cost 
microprocessor (16 MHz RISC,  
32 kB Ram, 256 kB flash). Further, 
the ILB framework showed that 
software reuse is possible when 
moving from modular hardware  
to fully integrated hardware  
(cost down for high volume).

Informing as opposed to controlling 
a luminaire implies that sensors and 
controls don’t require any 
knowledge of the system’s 
luminaires. Embedded sensors in 
combination with local intelligence 
allow simple and robust granular 
control, but a well thought-out 
communication framework is 
needed for the effective development 
of such a system. In this case,  
the use of a publish/subscribe 
design pattern results in very 
efficient communication and 
combined with the use of prioritized 
control (levels) delivers a very 
powerful solution for lighting 
systems with multiple sensors  
and controls. 
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Figure 9:
XML presentation 
of a rule - The event 
“SceneSelected” is 
generated by a  
6 button panel.  
The event comes 
with one parameter 
representing the 
pressed button 
number. This parameter 
is passed to the 
“LuminaireSetting” 
command 
“ActivatePreset”.  
So the shown rule 
will activate a preset 
depending on which 
button has been 
pressed


